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Abstract

A general theoretical base and a general strategy for implementing semiclassical quan-
tization using the adiabatic switching method is presented for two dimensional systems.
The method proposed does not depend on specialized coordinates, trajectory or surfaces
of section studies and is generalizable to many dimensional systems. The method gives
quantum energies at a useful level of accuracy for the vast majority of states in many of
the well known nonresonant and resonant Hanunltonian cases. Many eigenvalues previously
thought unobtainable when using the adiabatic switching method are obtained in a quite

sinmiple manner.



I. Introduction

Despite the recent development in computer technology which enabled very large
scale quantum calculations of atomic and molecular energy levels the field of semiclassi-
cal (SC) quantization remains an extremely active area of research. The SC approach
presents a tempting alternative to costly quantum calculations especially for multidimen-
sional systems, where reliable quantum methods are still sometimes impossible to apply.
Additionally, insights may be frequently gained using the SC methods, that lead to deeper
understanding of the physics of complicated systems. This in turn may stimulate “classi-

cally guided” quantum approaches!.

During the last ten years a large number of different SC methods have been proposed.
As a result, it is no longer possible to even briefly summarize the existing work in this field.
Instead, we refer the reader to several, representative review articles® where a comparison

of different SC methods 1s to be found.

Most of the SC methods rely on the well known EBK quantization of phase space tori.
A crucial problem with these approaches is that it is necessary to find the trajectories which
satisfy the EBK quantization condition. This may become a very hard and numerically
ineflicient task for systems with more than two degrees of {reedom. Therefore most of the

recently proposed methods® aim to minimize the work in finding the EBK tori.

[t is known that EBK based methods must fail when the corresponding classical
motion is chaotic and no EBK tori exist. On the other hand such methods as algebraic
SC quantization of high order classical perturbation theory expansions®* and the so called
adiabatic switching method (AS) are seemungly able to quantize trajectories in the mildly

chaotic region of the phase space.



The aim of the present paper is to pursue further the development of the AS method
of SC quantization. The method, based on the adiabatic invariance principle originally
discussed by Ehrenfest®. has been proposed and mumerically tested by Solov'ev® and iu-
dependently by Johnson”. It has been applied with success to a number of examples from
different areas of physics® "'°. It has been used also to generate SC wavefunctions'”, locate
stable periodic orbits!® and to study the famous standard map'?. On the negative side, it
has been frequently stressed that the method may be difficult to apply for strongly reso-
20,21

nant systems . In this paper we present an unambigous way to find the vast majority

of SC energy levels (in the regular and mildly chaotic regime) using the AS method.

[n this paper we will concentrate on ~wo-dimensional (2D) systems. Here, unlike
systems with more degrees of freedom (ser the following paper) we can be guided in
switching by changes in topology of the tori and the trajectories!® (for the description of
the AS method see Sec.Il) . While being aware of such changes, we will not incorporate
this knowledge into our method. The reason is that we seek methods valid in higher
dimensions where such topological information is dithicult. if not presently impossible, to
obtain. Hence, we use well known results ol classical and quantum mechanics to properly
formulate the initial conditions, and rely on the magnitude ol standard deviations to serve
as the basic test of the method’s success . | he examples in Section Vo will show that this

can be done successfully.

The proposed method is general. Although we mainly discuss the unportant case of
coupled harmonic oscillators (normal modes), the extension to other systems (like coupled
Morse oscillators or rotors) is straightforward; we give a prescription for an arbitrary
system. As in any generalization, the work presented benefits from earlier works on the
AS method. Section Il therefore gives a brict review of the method itself and a complete
(we hope) synopsis of the work performed 1p to the present by different groups. In Section
ITT a review of relevant topics from classical ond qrernnm mechanies is given. The general

approach we propose s outhned in Section IV winle exemplary results supporting our



analysis are presented in Section V. Finally conclusions, comparison with other SC methods
and future perspectives are the content of Section VL. In the accompanying paper which
follows this one, the generalization of the method to systems with more degrees of freedom

1s discussed and the results of SC quantizations of multidimensional realistic (SOz) as well

as model systems are presented.



II. The Adiabatic Switching Method

As mentioned in the Introduction most EBK based SC riethods suffer from the diffi-
culty of locating the “quantizable tori” i.e. tori whose actions satisfy the assumed quan-
tization conditions. An elegant method of avoiding this problem has been proposed in
the pioneering work of Solov’ev®. The method is based on an original remark due to
Ehrenfest”, who suggested that the quantizable tor of the nonintegrable system may be
obtained from the corresponding tori of the ‘ntegrable systen: by adiabatic changes of the
parameters characterizing the system.

The adiabatic invariance theorem has heen established for one-dimensional (1D) sys-
tems. Discussion of it can be found in standard textbooks on classical mechanics®? =*. In
essence, it states that the action (or any function of it) of a bound 1D trajectory generated
by a time-dependent Hamiltonian H(t) is conserved whenever the temporal vanations of
H(t) are small on a time scale large compared to the intrinsic time scale determuined by
the instantaneous frequency w(t):

H) e &y
dt o

This implies that the action is not conserved (no maiter how slow the changes of H(?) are)
when the trajectory crosses a separatrix. In fact the non zero change of adiabatic invariant
in this case may be approximated quantitatively -7

The adiabatic theorem may be generalized to separable systems®? 4, but it obviously
fails for nomntegrable systems which generically exhibit chaotic behavior. Several approx-
male approches have heen proposed (for a review see Rell23.24). Physically one might
suspect that adiabatic mmvariance is approxinately preserved for near-integrable svstems.

I'his claim is supported by a number of succesful miplementations of the AS method”



The practical realization of SC quantization utilizing the adiabatic invanance assump-
tion (coined the adiabatic switching (AS) method) proceeds as follows. For a given classical

Hamiltonian # - H(p,q) a new time-dependent Hamilton function is constructed:
H,(t) = Hj + Mt/TYH - Hf) (2)

where A(z) satisfies A(0) = 0, A(1) = 1. As t changes between 0 and the switching time T,
H, describes a continuous family of systems evolving from A to H. H{ is assumed simple
enough (usually separable) to allow for its eflicient S(' quantization. The initial conditions
at ¢ = 0 are chosen to lie on a “quantizable torus™ of Hj. Then the equations of motion
defined by the Hamiltonian H,(t) are integrated up to the time 7. One then appeals to
Ehrenfest’s conjecture and hopes that (for sufficiently large 7') the final values lie on the
“quantizable torus” of H, that is they also have quantized values of the actions. As H, is
time-dependent, the energy is not conserved during the switching. The final energy should
reproduce the SC energy of H corresponding to the chosen quantized actions.

Note that the procedure outlined above does not require H — H to be small. Clearly,
for a generic H, in view of possible chaotic motion and passage through separatrixes during
switching, this approach does not have to produce good results. Therefore a deep under-
standing of the dynamcs of the system, as well as cicar criteria to determine the validity
of the obtained results are needed for practical quantitative applications.

Already in early application of the method® it was realized that the above prescription
does not specify H{ and that by a choice of the most appropriate Hj one may optimize
the obtained results. Also for a given HJ. the choice of action variables is frequently not
unique and this may be used to advantage.

To start let us recall, that classical perturbation theory defines in a consistent way
the approximate invanants for Hamiltonian: of the form H = Hy + ¢H,; ¢ being a small
patameter™*? (see Sec.JITA). Soloviev® used classical perturbation theory as a guide to

choose the appropriate action variables fron which to switeh for a given H.



Solov’ev points out that a smooth change of trajectory caustics 1s an indication of the
approximate conservation of the adiabatic invariants. Thus he suggests that the reference
Hamiltoman Hg should be chosen 1o assure that quantized trajectories of the final H are
similar in shape to that of H]j. He also suggested the use of an ensemble of trajectories
and calculated the final energy as an average of energies of individual trajectories. The
initial points were chosen according to a probability density given by the modulus squared

of the SC wavefunction of Hj.

Johnson, not being aware of Solov’ev’s work, independently proposed the AS method”.
By studying different switching functions A(f1 he finds the form which‘ later became used i
the majority of applications (it turns out, not surprizingly. that quality of results depends
crucially on the smoothness of A(f)). He applied the method to model Hamiltonians.

similar to those discussed by Solov’ev.

Instead of averaging Johnson utilized a Fourier transform (FT) analysis of final ener-
gies to pick initial conditions non-randomly <o to minimize nonadiabatic effects. In Sec.V
this method and our proposed modification will be discussed in detail.

The very important paper of Skodje et al '% presented a detailed analysis of the SC
quantization via the AS method. The authors point out that the similarity of the caustics of
the initial and the final trajectory is not suthcient as a test of the successful implementation
of the method. They emphasize the importance of strong resonance zones encountered
during the process of switching, an effect wtich Solov’ev’® chose to ignore. On the other
hand, Skodje et al. pointed out that weak high order resonances did not in general destroy
the approximate adiabatic invariance. These wuthors were the first to notice that averaging
final energies not only gave the approximate SC energy, but also could be used to compute
the standard (root mean squared) deviatiot (SD) which m turn acts as a quantitative
measure of the accuracy of the obtained results. Skodje o1 al. exemplfy the nnportance
ol strong resonamt zones in several examples, poin e out. that by appropriate chaee

of 1§ or by sphtting the “switched on™ part. [l 1) o several contribution 1o he



switched consecutively, one may succeed in avoiding the resonant zones and thereby obtain
more reliable results. This method, which they termed the “resonance avoidance method”
requires, however, considerable insight into the system dynamics. This in turn weights
heavily on the application of the AS method in practical calculations. Detailed studies
of the system dynamics are time-consuming and for multidimensional (i.e. more that two
dimensional) systems are quite difficult to perform. Probably being aware of this difficulty,
the authors applied their method numerically'” only to systems in which the resonant zones
encountered at the beginning of the switching could be avoided.

12 addressed the SC quantization of mildly

An interesting contribution by Patterson
chaotic classical systems using the AS method (Skodje et al!® had noticed that AS appar-
ently properly quantized some chaotic trajectories in the sense of obtaining good energies
and reasonable SD’s). Utilizing a quantum-imechanical viewpoint, Patterson looked for
the influence of avoided crossings on the results. He found that the the AS method is
capable of “overcoming” sharp avoided crossings (manifestations of secondary resonance
zones) provided that they were passed through diabatically. This finding correlates with

discovery of Skodje et al. that the energies of states obtained by quantizing trajectories

in mildly chaotic regions can be optimized by the appropriate adjustment of the switching

time T which is chosen so as to minimize the corresponding SD’s.

Important modifications to the AS method were introduced by Grozdanov et al'?14,
The appropriate choice of HJ in a treatment of the Henon-Heiles system enabled these
authors to obtain excellent results for the so called “librator” states. A novel modifica-
tion was introduced at the level of the choice of initial conditions. Instead of using the
probability distribution determined by the SC' wavelunction or the uniform sampling of
the appropriate, but rarely known for a given Hj, angle variables, Grozdanov et al'® ran-
domly sampled the coordinates. For each choice of chordinates the initial momenta were
determined from the expressions relating the actions 1o the p.q and into which quantized

vaJues of the actions were substituted. Thi. strictly speaking, “informal” procedure is



justified in Sec.IV. The advantage of this method 1s evident in that it enormously enlarges

the possible choice of H .

In the treatment of the 2 : 1, Fermi resonant system another important generalization
was proposed'*. [t was known?® that the Hamiltonian of iwo uncoupled harmonic oscilla-
tors with a 2 : | frequency ratio was separable in parabolic coordinates. For the particular
coupling term in the model coupled oscillators Hamiltonian, the parabolic separation con-
stant K 1s proportional to the first order classical perturbation theory correction to the
unperturbed motion. K is therefore a first order adiabatic invanant of H. This suggests
that this coordinate system is well adapted to this particular pertur}‘)at,i(m. Nevertheless.
although the action variables may be formally expressed in terms of the integrals over ap-
propriate parabolic coordinates, their direct quantization still requires considerable effort.
The authors obtained the set of equations defining the torus by equating the quantum
eigenvalues of K and H{ to their classica: expressions in terms of p,q. To find points
on the torus these equations were solved for the p’s for each choice of q’s (“informal
method”). Again, very good results were nbtained. Morover, as pointed out by the au-
thors elsewhere?” taking the quantum value of A (instead of the SC one resulting from
the action quantization) effectively account: for the quantum effects of tunneling and over
barrier reflection present in the reference Hamiltonian H) - H!' + a A i.e. the method is
semiclassically uniforim in low order.

Recently, Saini and Farrelly!'®

applie¢ the AS method to the hydrogen atom mn a
strong magnetic field. In the chosen coordinate system (cylindrical coordinates) the pure
hydrogen Hamiltonian is not separable. 1he authors. however, extended to this case the
“inforinal” method for chosing the initial conditions. They also, following Grozdanov et
al'* used quantum values of the first order adiabatic invadant to locate the initial torus.

As shown m this short review section, the A5 method has undergone a quite rapid
developruent. The interest in the method Hes i its apparent simplicity, effectiveness and

casy numerical implementation. There are still. however important unanswered questions.

[N



First is, how to prescribe a unified, general method for making the best choice of the H{
and the quantization conditions? How to deal with strongly resonant systems? Do we
really need to study intensively the topology of the perturbed Hamiltonian (as has been
done in all of the mentioned applications)? The main objections to the AS method?’-*!
come from the ambiguity and general vagueness of the answers to these questions.

In this paper we seek to resolve these remaining problems. We claim that the ap-
proach proposed in Sec.IV and exemplified in Sec.V leads to a method which allows for
“blind switching” i.e. the reasonable application of the AS method to a rich variety of
Hamiltonians without a detailed study of trajectory shapes, tori deformations, caustics
etc.

As the proposed method relies heavily on known results from classical and quantum
mechanics, in an effort to make the paper self explanatory, the related essential defimitions

and concepts are reviewed in the next section.



II1. The dynamics of two dimensional near-integrable systems

In this section we present a condensed review of classical and quantum properties of
2D systems. We concentrate mainly on the resonant systems, as here lies the clue to the
general implementation of the AS method. The background presented in this section is
neccessary for understanding the ideas and techniques presented later. The experienced
reader can proceed directly to Section 1V where the concepts presented here are rather
extensively used.

The section is divided into two separate subsections on classical and quantum systems.

respectively. Understanding of both is a prerequisite for the successful application of the

SC ideas which link these two viewpoints

23,24

IITA. Classical dynamics

Consider the general, two-dimensional Hamiltonian expressed in terms of action-angle

variables (I;, 0;):
H(l,[,,0,,0,) = Hy(l;, [;) - eH{(1,,1,.0,,0,). (3)

Our aim 1s to find the best possible actions to characterize the motion governed by the
Hamiltonian (3). The perturbation H, nay be expressed as a Fourier series in the angle

variables:

I, \i Hy, (1, L) exphll®) - mo,l}, {(3a)

N

|



Assume that the zero order frequencies, w!(I) = dHq(I)/0I;, are in resonance (commen-
surate) i.e. w!/wy = s/r for some values I of the actions. Standard perturbation theory
usually then leads to the “small denominator” problem and secular perturbation theory
must be used to remove the divergencies. Note that at the resonance O, = rQ; — sO> is
an additional exact (local) constant of the motion of H,. For small nonzero ¢, ©, varies
slowly; its variation being a measure of the system’s deviation from the resonance. Thus
O, constitutes the ideal slowly varying variable for adiabatic analysis. On the other hand
the choice of the fast variable is ambigous. The canonical transformation which identifies

the slowly varying variable may be defined by its F; generating function. Due to the

freedom of choice of the fast variable any generating function of the form
Fy(I,0) = A(rO; — s02)], + f(01,0,. 1),

where A, f(...,.) are an arbitrary constant and arbitrary function, respectively, will serve

our purpose. Let us make the following convenient choice:

Fy = (2rs) Y (r®; — s0,)1, +(rO, 4 s0,)I,} (4),
leading to
O, = (2rs) 1(rO;  $0,) - (2rs) 'O, (5a)
O, = (2rs) 1 (rO, - 50,), (5b)
I = sl -rl,, (5¢)
I, = sl +rl,. (5d)

The Fourier expansion (3a) expressed in the new. “tilded” variables is

Z H[m(i)exp{i[(ls Cmr)O 4 ils + mr10,]} (6)

L,m

The average over the fast variable ©, leaves only the terms satisfying Is + mr = 0:

oo

Hi(l,,0) \L: H o, i iexpl 2i(rs1pOy b ;

» ~x

-1



The averaging is valid when d(?t‘ & dgz i.e. only near the resonance. The averaged

Hamiltonian

H - Hu([_hiﬁ 1 <H1([1-[2-®1)

1s by construction independent of, i.e. cyclic in, (:)2; thus I, is a proper (first order, valid
for small € only) adiabatic invariant. H is an effective, one-dimensional, thus integrable.
Hamiltonian (in (I;,©,) variables). As such a formal solution of the dynamics allows it to
be expressed in terms of a single action (with I being the parameter) J. i.e. H--H(I,J. ).
Note that by construction J, is formally dependent on . Recall, however, that the adiabatic
theorem 1s valid for one-dimensional systems 1see Sec 11). If we chang;f ¢ slowly. the action
Je will not change. This proves that J. is not dependent on ¢ and we can drop the subscript
denoting it simply as J. The set of two actions /,,.J is a unique set of actions that are
conserved when Hj i1s perturbed by ¢H;, ¢ being small.

The above procedure used to find these actions i1s a form of lowest order classical
perturbation theory. Any other form, e.g. Birkhof-Gustavson normal form, produces in
the lowest order results that are completely determined by I, and J. As such these results
are also adiabatic invariants. Our AS strategy will in an essential step equate these classical
adiabatic invariants to quantum ones (Eqs.(16),(17).(18) below). As such, our method is
based on switching from tori possessing quantized classical adiabatic invariants.

Further insight may be gained by additional approximations. Frequently Fourier com-
ponents in (7) decrease rapidly as p increases. Leaving only the leading p = 0,11 terms
one obtains

H = Ho(1) - eHpo(T) - 2¢H , ,iT)cos(2rs)O,
or coming back to the original action-angle variable:
I’ ]10([) | (IIm)(I) ! ,)( Il ,_“([]l'(l.‘%(l'("), .\'("):) (h’

.. the well known resonance Hamiltonian with the so called “secular term”, which is

dependent on the exphicitely present @



There are two possible cases discussed in the literature?*:

accidental and intrinsic de-
generacy. We discuss briefly their definitions and physical meaning for use i the following

sections.

(a). Accidental degeneracy occurs when the resonance condition is satished only for
particular values of actions Iy, I,. This implies that H is nonlinear in at least one of these
actions. The unperturbed Hamiltonian Hy. transformed to the “rotating, tilded coordi-
nates” (5) is then a function of both new actions I, and I,. In this case the perturbation
cannot induce large changes in the action I, (which together with its conjugate variable
O, describes the “slow” motion) as Hy strongly detunes from resonarice when I changes.
One can then expand the resonance Hamiltonian (8) around the value of I, corresponding
to the center of the resonance and neglect higher than quadratic terms. This leads to an

23.28  The effective motion may

effective Hamiltonian isomorphic to that of the pendulum
be either of the librating or of the rotating type which are separated by the separatrix.

For future applications, let us point out, that although J (see above) is the conserved (to

the lowest order) action, the error made assuming /, is conserved is relatively small.

(b). Intrinsic degeneracy occurs when the resonance condition is satisfied for all values
of I, I,. (:)1 1s then a global constant of the unperturbed motion and Hy 1s a function of
A only: Hy = Ho(fg) = Ho(rl; + s1;). The popular example of the intrinsic degeneracy 1s
the case of two uncoupled harmonic oscillators with commensurate frequencies. Contrary
to the accidental degeneracy case, large changes in I; are possible as Hg is I; independent.
Similar expansion as in the previous case is not possible as changes of I;, ©, are of the same
order. Instead one can make separate expansions around elliptic fixed points of (1,.6),}

motion?3.

Around each of them, this procedure leads to an effective harmonic oscillator
Hamiltonian and to librating type motion. The different librating motions (centered around
different fixed points) are separated by the separatrix. The separatrix separates also the

resonant zones from the nonresonant zone. The volume of the phase space occupied by the

resonant zones is large as compared to that m the accidental degeneracy case (compare



Fig.2.8 of Ref.23).

It happens frequently, especially for model, high symmetry Hamiltonians, that the
above first order terms vanish. One has then to carry the secular perturbation theory to
higher order. A similar distinction between intrinsic and accidental degeneracy still holds
as it 1s determined by the Hy. The important case to be distinguished 1s however when
the first nonvanishing order only an angle-independent Hgyg term appears and secular terms
are of higher order. Then it is justified to include the iy term in the “modified™ 1"
The new “zero” order Hamiltonian depends now on both actions, H**4 - Hy + ¢ Iy,
H(’,””’i(il, ig), where j- 1,2 depending on the lowest order in which Hgy term appears. The
“modified” representation gives a near degeuerate (if Hy, lifts the degeneracy) -ystem.
In this case, the degeneracy of the Hamiltomian will rather be of accidental, not mtrinsic
character.

Finally for larger ¢ secondary resonance zones appear, which strictly speaking destroy
the i-g,J adiabatic invariants . In the generic case. however, secondary resonance zones
are much smaller in size than the primary ones. It has been pointed out®® that the
rapid reduction in size of higher-order resonance zones (1slands) suggest that the lowest
order invanants persist in the neighborhood of the primary fixed points. For still higher
couplings as the resonance zones start to overlap*®. chaotic motion, previously restricted
to thin stochastic layers surrounding the separatrixes becomes important.

To end this subsection let us briefly concentrate on the specific case of coupled har-

monic oscillators. The Hamiltonian is:

1 - : 2 .
2 2 2 2 2 2 kgl
H - .j{Pl Cpy b wigy twigat L IR )
& ke o2
with w; = rw, w, = sw; r,s - integers (for simplicity of discussion we neglect kinetic-

Tr

tvpe couplings of the form pP'ph). The obvions chiorece of Hy is thie uncoupled system.
The resonance condition is then fulfilled for all 1, 7. v.c. the system s, by definition.

mitrinsically degenerates Usnally the sune e 097 1< fite i practical applications. the



power of monomials ¢f¢, being limited to some power M (k +{ < M). The lowest
power term leading to secular behaviour (in the first order) is ¢q;¢5. For relatively large
r,s the model Hamiltonians discussed in the literature frequently do not contain this
terin (due to limitation on M). This is the case for the extensively studied?®29731 3 : 4
resonance Hamiltonian (see Sec.V). As pointed out above the distinction between intrinsic

and accidental degeneracy is in such cases ambigous (see also the discussion in Ref.20).

IHB. Quantum mechanics )

As in the classical case we concentrate mainly on zero order degenerate systems.
Contrary to the previous subsection we begin our discussion with the particular, important
case of coupled harmonic oscillators. In this case the formalism may be nicely represented
in terms of creation and annihilation operators. The generalization to other systems is
straightforward.

The Hamiltonian we are considering is the quantum version of (9) with ¢,,p, now

being operators:

T o -
H= {pl+p;twig +wigi) ¢ Y anighdh. (10)
- k>0
[ntroducing the creation and annihilation operators:

o —1/2 1,2 S Pt
a Z {w] qy, - Lul ])1}

a1 /2 /2 1;
at =2 /{u.‘] g1 w p1}

A FE T R L



the Hamiltonian (10) takes the form:

| I ~ gy : :
t+ ~ Y 1 ) i TR o kop+ l
Ho wiata s ) - wlbth ) fk‘\[ . (zwl)*‘“(mz)fﬂ(“ La)f(bt b (11}

Assuine as in the classical case that the frequencies are commensurate i.e. wy/wy = sw/rw.

The uncoupled oscillators “zero order” Hanultonian becoes

| |
H, u‘{.s(a*a N r(hth 4 »)) (12)

21,3233 ts high sym-

The symmetry of Hy has been extensively discussed m the literature
netry results in a large set of observables comnnuting with (12). Any mutually commuting
pair of these observables completely characterizes the spectrum of Hy. The one obvious
choice is A = Hy/w which describes the total excitation of the unperturbed system. Dif-
ferent eigenvalues N of A correspond to diflerent degenerate manifolds. There is a finite
number of low lying nondegenerate states; for them V < rs. A second observable is needed
to differentiate between states within the manifold. The simplest possible operators that

do not change N are a*a, b*h, (a?)"bh* and a”(b")°. The last two are non-hermitian and

we have to construct observables out of thern. The simplest choice is:
K o (at)ys® + a"th ", (13a)

Loilla" )b ' (b)), (13b)

The operators a’ a, b b are occupation operators of individual modes. As we have already

fixed A which is a weighted sum of them. it is natural to choose their weighted difference:
AM=sata rbth (13¢)

as a symmetrized conbination.
The operators K. L. M do not commute with each other; all three of them by con-
stricction conunute with 4. The operators + 13) tarn out to he deeply related to the SU(2)

. . . . » ) 1
svinmetry of [y that s shared with the correspons g classweal systenn = =44



Obviously K, L, M are not the only possible choices for the second (the first 1s A)
observable. In general any analytic function of A, K, L, M and the identity operator can
be used as a second, commuting with A observable. IUs choice should be determined by
the nature of the perturbation H - Hy. Before making our choice let us first qualitatively

discuss the influence of the perturbation on the system.

In Fig.1 the level correlation diagram of the exemplary degenerate oscillator system
1s presented. For a very small perturbation the levels shift linearly with ¢ when the first
order contribution does not vanish or with ¢* when the second order contribution is the
first nonvanishing one. The different N manifolds are well separated:; Nisa good quantum
number. The second quantum number which characterizes the states within the manifold
may be simply defined by energy ordering; i.e. the lowest state has its value say .V,
equal to 1, for the second one Ny = 2 up to the uppermost level in the manifold. This
region of ¢ will be referred to as a non-N mixing region. The first nonvanishing order
quantum perturbation theory works well until the levels in the correlation diagram begin
to bend. That usually happens just before the appearance of the first avoided crossing
between levels of different manifolds. Again this is the generic behaviour of the system. For
some particular systems the levels may strongly bend before the manifolds start to overlap
and even cross within the same manifold. When the uppermost states of one manifold
begin to cross (in the adiabatic approximation) or rather undergo avoided crossings with
lowest states of the neighboring manifold the inter-N' mixing region sets in. These first
avolded crossings are usually sharp and narrow due to the fact that properties of the levels
involved are drastically different (as easily seen from their very different directionality in
the correlation diagram). This is frequently related to a different spacial localization of
the corresponding wavefunctions. Note that for very small intervals of ¢ at the crossing
the states strongly mix and the original quantum numbers are no longer good ones. Ou
the other hand as the splitting between levels is small, their energies are still, with small

error. well approximated by the adiabatic valies. For higher « the exact levels [ollow



their original, low € directionality; their wavefunctions are very close (in the overlap sense)
to that for low ¢. All these properties are easily seen considering a two-level coupled
model. Therefore the levels “after” the sharp avoided crossing are still well described by
the original quantum numbers.

For still higher ¢ (or higher excitation) less extreme, in the directionality sense, states
begin to cross. Their avoided crossings are less sharp and wider in energy avoidance. leading
to larger range of ¢ values for which the states are strongly mixed. As € is increased further
anticrossings occur one after the other, forbidding the states to “recover” their original
gquantum numbers in the wake of the anticrossing. The two state model’description becomes
insufficient to describe the individual wavefunctions and more and more “configurations”
need to be taken into account. Finally (for sufficiently high energy or large ¢) the region
of multiple avoided crossings is reached which is an indication of irregular wavefunctions.
The presented qualitative picture is a known’* route to “quantum chaos” via the picture

of avoided crossings.

From the above qualitative discussion it is clear that the best simple second observable
which may be used to assign quantum numbers (at least for moderate energies or small
¢) should be determined in principle from the perturbation expansion of the coupled part
of the Hamiltonian matrix. Any other assignment will not he as good as already in the
low-coupling perturbative limit the corresponding second quantum number is not even
approximately conserved. This does not mean, however, that the SC quantization based
on the “wrong”, second quantum number choice will produce entirely wrong result. As
pointed out by Skodje et al'® (and seen also from the qualitative picture given above) in
the non-NV mixing region the energy is often primarily dependent on N (i.e. the principal
quantum number, associated with the 4 operator) and only weakly on the second quantum
number.

It is important to realize that the arguments and quahtative picture presented above
are toa very large extent valid for arbitrary devenerare zeroorder Hamiltonians which are
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not necessarily in the form (11). One may always in principle define an operator (equivalent
to A) whose eigenvalues distinguish between different manifolds and a commuting second
operator 1" which differentiates different states in the given manifold.

For future application in Section IV we need a practical prescription to find the eigeu-
values of the T operator. Define the projection operator onto the N manifold Py =
an [N,n;)(N,n,|, where n, denotes an intra-manifold unperturbed eigenfunction in-
dex. Also define the complementary operator @n - 1 - Pyn. Write the Hanultonian
in the shorthand notation H = Hy + €V. Define the Green’s function of the total system
G(E) = (E — H) ! and the zero-order Green's function Go(E) = (E — Hy)~'. Repeated
use of the known equality®> G(E) = Go(E) + e(/o( E)VGQ(E) for the Green’s function

PnyG(E) Py leads to (we now drop the index V for convenience):

PG(E)P = (E - H,.;) ", (14)

where

N :
Hepy~ PHoP + ¢PVP 4 ¢PVQ -——QVP 1 ... (15)
E - H,

For each manifold this procedure leads to a small matrix of the order of the manifold
degeneracy, which then may be diagonalized.

Note that we need to use (15) in the lowest nonvanishing order only. Thus we may
write H, s in the form

Hopy = PH,P - T (15a)

where j = | when the first order term ( PV ) does not vanish and j = 2 otherwise. and T
is the desired operator. Diagonalization of H, , ; gives the first nonvanishing order energies
and also via (15a) the eigenvalues of the T operator. T can be written in spectral form in
terms of its eigenvalues and the eigenfunctions of ;.

For the Hamiltonian (11) (or any other expressible in terms of annihilation/creation

operators) further progress may be made by noting that the projections in (175) leave onle



those combinations of a,at,b,b" in the effective perturbation which preserve the quantum
number ¥V, thus [A, H.¢¢] = 0. Therefore H.;; and also T may be expressed in terms of
A, the identity operator I, and the operators K, L, M defined by (13). Simply put, in a
first {second| order example, V [VQ(E — Hq) 'QV] is expressed in terms of creation and
annihilation operators using eq.(10); then terms which do not preserve N are dropped. By
using the commutation rules the result can he expressed as a function of A, [, A, L and
M. Obtained in this way an analytic expression for H.s (which is independent of the
particular N manifold) speeds up the practical implementation of finding the eigenvalues
of H.yy as malrix elements of combinations of creation/annihilation operators are easily
evaluated. The analytic expression for the 7" operator allows for its direct association with

its classical counterpart in the SC quantization applications presented in the next section.



IV. Adiabatic switching. The general strategy

In this section an unambigous method is formulated for choosing initial quantizable
tori and initial conditions (points on these tori) to be used in AS quantization of an
arbitrary Hamiltonian. In the next section the numerical applications are given which
exemplify the use of the method.

Our approach is a continuation of the line suggested (and applied to a very particular

case) by Grozdanov et al'*!4

, with however iraportant modifications and generalizations.
First we discuss the method for the particular Hamiltonian (10) in detail (with possi-
ble straighforward generalization to “kinetic” couplings) as the case of coupled harmonic
oscillators 1s very important in applications. At the end of the section we discuss the gen-

eralization to other systems. From now on quantuim operators will be denoted by a “hat”

" wherever ambiguity between classical and quantuin quantities could appear.

The discussion of the energy level behavior in the preceeding section indicates that
for a quite large range of the perturbation parameter ¢ (in the formal expression for the
Hamiltonian H = Hy + V) the levels can be followed up 1n ¢ on the correlation diagram
in the unique way. This extends beyond the lowest order quantum perturbation theory
(straight line) region into the region of sharp avoided crossings (and exact crossings if anv).
Some “extreme” states may be even followed up to the region of “multiple avoided cross-
ings”. This strongly suggests that as the reference Hamiltonian we can take the uncoupled
harmonic oscillators Hamiltonian Hy = H{ and switch on the perturbation provided great
care 15 taken to choose the initial conditions “in harmony” with the perturbation. Recall
that we denoted the quantum perturbation operator (defined in Sec.IlIB) as 7. Bv T’

we denote its classical counterpart obtained liv appropriate (sccular if necessary) classical



perturbation theory. The alternative approach to that just suggested above will be to
choose as the reference Hamiltonian H] - H} + ¢/T. where as before j denotes the order
at which a first nonvanishing contribution to T 1s obtained. The latter approach seems
slightly advantageous as in this case the reference Hamiltoman is “closer” to the final H.
The latter method will therefore be suggested for numerical applications in most cases.
The simple prescription for locating initial conditions for the AS procedure, based on
the above observation is as follows. We discuss separately the resonant, non resonant and

near resonant cases.

A. The resonant s : r case.

We list the proposed procedure in steps:

l. Calculate the first nonvanishing (first or second order) quantum invariant T in the
operator form using the effective Hamiltonian approach as described in [IIB.

2. Find its classical counterpart T using secular perturbation theory or the Birkhoff-
Gustavson normal form?®2%24 to the same order in «.

3. Diagonalize HU s ¢/T in each manifold and find the cigenvalues of T.

4. Define the initial torus by the equations
Ei - Bease ~ Hy(a,p) + €T(q,p) (16a)

T, T(q,p). (16b,

5. Inmitial conditions on the torus are chosen by the “informal” procedure, introduced in
Sec.ll. The positions ¢, ¢» are randonuy chosen i the classically allowed region (at
energy F;) of the configuration space. 1'gs.{ 16) determine the corresponding momenta

(usually they must be found numerically). As Egs.( 161 are in general nonlinear one
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may get multiple real solutions (then one of them 1s accepted) or complex solutions
(note that (16b) may sometimes allow for no real solution for p;,p, for a given pair
q1,92). In the latter case we choose randomly new positions and continue until real
solutions are found.

6. Repeat step 5 as many times as required to get a set of different initial conditions.

=]

For each initial condition perform the AS procedure, integrating the equations of

motion for Hamiltonian
H(t) = Hy + Mt/T)(eV - €T).
Note that (16) is equivalent to:
Ey = Hy(q,p), (17a)

T; = T(q,p), (17)

where Ey is the energy of the given uncoupled manifold. Thus the same initial condi-
tions could be used to switch the whole perturbation from Hj == H}. This is physically
understandable as the proper zero order wavefunctions (chosen according to the pertur-
bation) are the same for Hoh and H(? + T As the tori of H} are degenerate (due 10
the “super”-symmetry of H} all trajectories are periodic) Eqs (17) deterinine a subset of
periodic orbits (trajectories) which under the perturbation T evolve into a single torus.
Sometimes, but not always, ' may after some algebraic manipulations be expressed in
terms of the “global action” I, which is a proper adiabatic invariant (see Sec.Al, Eq.(5d)
and the following discussion) and a single second known, e.g. SU(2), action®' (this is
the case for the Hénon-Heiles system - see the next Section). Then one may avoid the

“informal” method and quantize the actions iu the following way. As
1—’_) - I',vu/u.:', { lr\{l)

fg cslng + 120 - r(ng v 1/2) i 1%b)



where ny,n, are integers such that (18a) is satisfied for a given manifold. The expression
tor 7" in terms of the actions gives the value of the second action using the quantum value
T,. The harmonic oscillator angle variables corresponding to these actions?' may then be
chosen randomly and a transformation to the original q, p carried out giving the required
initial conditions. The advantage of this modification (which, let us stress, is possible in
special simple cases only) is that the initial conditions are properly randomly sampled on
the torus. On the other hand the reference Hamiltonian is “farther away” from the final A
than in eq.(16). [t is worthwhile to point out that action variables quantized in this way do
not lie exactly on the EBK torus. Only for very high quantum numbérs will this difference
(i.e the difference between the eigenvalues of the quantum perturbation operator T and
the EBK quantized values of T') disappear. For low or moderate quantum nuimbers a small
difference analogous to the so called Langer correction in the WKB theory?” and due to
anharmonicities may appear. Also purely quantum effects such as over barrier reflection
and tunneling, if present in Hor t UT, are taken into account in our method. Thus the use
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of quantum values for T asin (17) and (16} provides a low order uniform®® quantization®'.

B. The non resonant case.

[n spirit we proceed in exactly the same way as described in case A. The procedure can
be considerably simplified due to the trivial observation that the appropriate P subspace

may be safely chosen to be one-dimensional (1.e. P ) (g

. where @ is the nitial
state wavefunction). The first nonvanishing order quantum invanant is then expressable
cutirely tn terms ol @ a.b" b and the unity sperators. The sunplest approach, therefore. is
to quantize directly the actions Iy, [, in the standard wav. Setting H H(i’ one may then
switch the total perturbation (as discussed above) choosing randomly the angle vartables

2t



0,,0,.

One may be tempted to use an approach analogous to that described above for the
resonant case and use the quantum eigenvalues of the 7' to get non-EBK values of the
actions. As EBK quantization gives perfect quantum eigenvalues for individual harmonic
oscillators no Langer-type correction exists in this case. Therefore this modified approach

will improve results only when big anharmonicities set in at low energies.

C. The near resonant case.

We proceed in the similar way as in the resonant case. If the frequencies are w, =
(s + @)w,wy = rw where 7, s are relative prime integers and a is small we construct the P
space (and build up the classical invariant) as for the s : r resonant Hamiltonian.

The procedure described in cases A to (0 enables us to perform AS quantization for
an arbitrary Hamiltonian of the form (9).

We now offer the equally simple prescription for an arbitrary Hamiltonian, provided
that the lowest nonvanishing order classical perturbation theory may be carried out an-
alytically. Note that in the procedure described above the operator form of 7' was never
actually used (except for comparison with it classical counterpart T). We used only its
eigenvalues T; to set up the initial conditions in Eq.(16b). These eigenvalues are sim-
ply obtained from (degenerate if necessary) quantum perturbation theory in the lowest

nonvanishing order. Therefore if we write the classical Hamiltonian once again in the form
H =H,+ V (19)

we are still able to find, using the “informal” method, the approprate initial condition for

AS procedure provided that

I. The quantum eigenvalues of H; are known.



2. The lowest nonvanishing order (first or at most second) quantum perturbation cor-

rections to these eigenvalues can be effectively calculated
3. An analytical form of T can be found to the same order 1 e.

The procedure is exactly equivalent to that already described for the resonant IV.A
case. Some additional remarks, explanations and warnings are in order. We do not claim
that the method described above will work well for the energies of all the states in the
regular and classically weakly chaotic regime. We do claim, however, that the method
will work for the vast majority of states. As the AS method is very simple to implement
numerically the proposed method allows us "0 obtain most of the states in a simple way.
All the states in the low energy (small €) range are usually obtained with excellent accuracy
(see Sec.V). For the higher energy region (larger ¢) a very few states may be inaccurate.
These energies are characterized by relatively large standard deviations (SD) as compared

to nearby states. We refer to these states as “hard” states.

Some of the “hard” states may correspond to strongly chaotic trajectories. The SC
quantization of these states cannot be improved by any of the existing SC methods. On the
other hand some “hard” states may correspond to classically regular motion. The relatively
large ST)’s obtained in such cases are the mdication of tori topology changes during the
switching (separatrix crossing) and the breakdown of the approximate adiabatic invariance.
Recall, however, the generic energy level correlation diagram i see Fig.1 for the resonant Hy)
discussed in Sec.[1Ib. As long as we are studying the region of energies corresponding to
1solated or sharp avoided crossings., which may be tested numerically by producing the level
correlation diagram during the switching, we believe and demonstrate that despite the large
SD’s, the SC energies obtained are in reasonable agreement with “true” quantum values. In
practice we find, (see Sec.V)), that the accuracy of the SC obtained results is only worse by
roughly one significant figure as compared o the “best” states, i.e. those characterized by
small SD’s. For these cases we justify the aceuracy of the A4S encrgy level vesults by viewing

the A as a conlinuation procedure that approrimates perturbation theory. Our resulls
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supporl this view. As long as the correlation diagram is “well behaved” and perturbation
theory holds the AS method seems to give good energies (not actions or topologies). This
is intuitively reasonable as we have already noted that classical perturbation theory is
carried out as in Section IITA by first finding the adiabatic invariants. The combination of
classical and quantum perturbation theory used here (Egs.(16,17,18)) and the AS yields a
mutually supportive system of computation.

We note paranthetically and it will be shown below that some of the states for which
we can observe the separatrix crossing in 2D give small SD’s and excellent energies. Here
the separatrix is weak and the final trajectory topology is correct (see Fig.2). The states
are not “hard” in our language. In this case our method gives good energies, topologies
and acceptable albeit not optimal actions.

What does one do for those few “hard” states for which our method fails? Our answer
is to give up on the AS method and use a more time consuming other SC methods. It is
well to note that the literature has many examples of states which the AS method is not
supposed to be able to get while we will show that it treats them succesfully.

As discussed, one of the reasons for the violation of approximate adiabatic invanance
is the separatrix crossing. In trying to get the hard states of Hénon-Heiles system (starting
from our general H]) we have devised a strategy that minimizes the error at the separatrix
crossing. The method is explained in detail i the next section for the Hénon-Heiles systen.
Let us note here only, that this method is easily implemented and seems to significantly
improve the SC energies obtained by the AS method for “hard” states. When it gives
significant improvements it provides a well defined way to approach the “hard” states.
The error minimalization method, contrary to the resonance avoidance method does not

involve other quantization schemes; is a modification of the AS method, and is not too

time consuming.
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V. Examples

In this section some numerical applications of the proposed AS method to model two
dimensional systems are presented. First we present and explain our implementation of
the method to a popular 3 : 4 resonant Hamiltonian. As a second example we briefly
discuss the results obtained for Fermi resonant 2 - | and [ : 2 Hamiltonians. Some selected
states of the Hénon-Heiles 1 : 1 resonant system are also treated to further exemplify the

proposed technique. Finally we study the case of a non-resonant model Hamiltonian.

V.A. The 3 : 4 resonant system.

The Hamiltonian studied is

H =H, + \V, (20)
where
1 D) “ 9 2
T ] 210
Voorty (200)

and the chosen values of parameters are w, = V0.9, wy V1.6 and A = —0.08. This
model system was originally studied by Sorbie and Handy?" and later by Stratt et al.3¢
in their investigation of nodal patterns of quantumn eigenstates. The same system was
considered by De Leon et al.®' in the study of the relation between classical resonance
zones and quantum mechanics. Recently, Martens and Ezra’’ calculated the SC energies
of the Hamiltonian (20) using the so called Fourier transforin method. They confined their
study to moderately low lying states. This was done because the method chosen requires

long integration times to resolve higher lving states in the energy region where the density

of states 1s large.



The classical dynamics of the system is well understood?®?*~ 3!, For the values of
the parameters chosen the classical escape energy (dissociation energy) Ep = 25.33. The
classical motion is predominantly regular up to energy®' Ec - 22 as seen by a study of
Poincaré surfaces of section. Up to energy E, — 16 the phase space can be divided into
the 3 : 4 primary resonance zone and the non-resonant zone???%; also near this energy very
small secondary resonance zones appear. Around F, - 19 the secondary resonance zones

get big although they are still much smaller than the primary 3 : 4 resonance zone’!.

Let us correlate this picture with classical secular perturbation theory and quantum
perturbation theory as in Section [I1. The coupling term V is a monomial of much smaller
order than required for the resonance to appear in a low order of the perturbation theory
(the secular term would be e.g. x*y® for the 3 : 4 resonance discussed). The first (in
A) order term vanishes and the classical second order term may be immediately written
down by noting that (20) belongs to the family of Hamiltonians discussed by Robnik>.

Explicitely it takes a form:

/\2

2 2{
wy — 4wy lwyw,

2 &Uz
L, + 2% i/~21,2} (21)

(“"lw2)2

V, =

where Iy, I; are the action variables of z,y modes. Expressing V> in terms of the tilded
actions I \ I, introduced in Section 1TTA (5) one notices that V3 is independent of the angle
variables. Thus its Fourier analysis trivially gives only the “Hge” term. In other words
I, I, are good actions up to the second order Similarly Eq.(21), not being dependent on
angles ©;, shows that I, [, are also good actions.

Hence the Hamiltonian (20) is a good example of the case, where although Hg (uncou-
pled harmonic oscillators) is formally intrinsically degenerate, the effective HJ = Hy + V5
1s accidentally near degenerate as the angle-dependent coupling appears in higher than

. . . .y - >
lowest nonvanishing order. A similar conclusion has been reached by Martens and Ezra®?.

The quantum perturbation approach is traightforward. Express the coupling V'



terms of the a,a?,b,b' operators (15):

Vo= Qu-,?/‘ﬁ(aJr a'Yarat)bib) (22)
Choose the subspaces Py as described in section [11B 1.e. for a given N choose states with
quantum numbers n,,n, such that 3n, +4n, = N

By inspection the first order term, PV P, vanishes. The second order term can be
easily evaluated, noting that only the “diagonal” contributions appear in this order i.e.
there is no path via V' linking two different states of the same degenerate manifold. In

other words, nondegenerate perturbation theory would have given the same result. Let us

compare the so obtained operator

R A2 9 2 3/8w3 2
Vo= oo Cata )bt 1 2% I (a1

9 = 40.1] Wiwo u)lw-z)“’

16i]§ )
to the corresponding classical expression (21). EBK quantization of (21) is obtained by
substituting I , =n, , + 1/2. As V, is diagonal in the z,y basis one can compare directly
the eigenvalues of Va with the semiclassical expression for V,. The difference appears as

S P S
16w?(w? -4w?)’

a constant term C - - Following the discussion in Section Il we could
quantize fl,fz in a “non-EBK” way by assuming I, - 3(n, + 1/2) + 4(ny + 1/2) and
obtaining I; by setting (21a) to be equal to the corresponding eigenvalue of V,. Inverting
relation (5) gives then non-EBK values of I;.[,. Note however that as I, I, are Cartesian
actions corresponding to uncoupled harmonic oscillators the correction to the EBK values
is expected to be small (especially in view of high dissociation energy Ep of the system).
Thus without loosing accuracy in any significant way we may quantize I, I, according to
standard EBK rules: [, = n, + 1/2. By performing both KBK and the above non-EBK
quantization, we have checked that the results obtained are very close and well within the
error induced by the finite sampling of the angle variables. Therefore in the Tables only
the results obtained nsing the EBK guantization rule are listed.

The results are generated by the average of 25 trajectories. We have chosen the

uncoupled harmonie oscillators Hamiltonian f, (204} as a relerence Hamiltoniauw HY 1,



and we have switched the total perturbation. The switching time was chosen to be T = 400.
As discussed in Section IV this results in Hj being “further” from the total H than if we
had chosen H('," = Hy + V,. In the latter case we would have had to use the “informal”
method of finding the initial conditions. By choosing H] = H, one easily finds the initial
conditions for integration of the equations of motion in Cartesian coordinates by using the

known relations of action-angle variables to the Cartesian ¢;, p,.

The results obtained are presented in Tables I-IV. Due to the relatively large number
of bound states of the system {20), only selected states are given. In Table I moderately low
lying, even states (up to £ =~ 2/3Ep) are collected. For these states a detailed comparison
of our results to that obtained by other SC methods may be made. Note the table shows
that in this energy region different principal number N manifolds do not overlap. All SC
energies obtained by us in this region are in excellent agreement with quantum eigenvalues,
regardless of the topology of the final torus. To exemplify this result, we present in Fig.2
the final trajectories for some selected states. [n Fig.2(a-b) two quantizable trajectories for
states 45 and 57 (counting only the even states) are shown. They have the well known®?3!
“pretzel” shape, indicating that their tori lie inside the 3 : 4 primary resonance zone.
This has been confirmed further by the Poincaré surface of section (SOS) plots for the
trajectories - not shown to save space. In Fig.2(c-d) quantizable trajectories for states 53
and 49 are plotted. As revealed by SOS plots these trajectories correspond to the motion
close to the separatrix separating the resonant and the nonresonant zones. The trajectory
depicted in Fig.2(c) (state 53) is “just inside” the resonance zone; the one in Fig.2(d)
(state 49) is “just outside”, in the nonresonant zone. Finally in Fig.2(e-f) quantizable
trajectories for states 60.64 are shown. They have deformed rectangular caustics and
indeed the corresponding tori lie deep in the nonresonant zone. Note that, for state 64,
close inspection of the trajectory in Fig.2(f: (and the corresponding SOS) reveals that
strictly speaking this trajectory lies in some high order secondary resonance zone. Despite

the different topologies of the trajectories depicted in Fig.2 the SC energies obtained are
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all in excellent agreement with the quantum values. State by state comparison reveals
that the SC values obtained by the AS method, even for the “wrong topology” cases are
in better agreement with quantum eigenvalues than Sorbie and Handy’s early results®® or
the Fourier transform method of SC quantization values®".

In Table Il states around £ - 19 are given. In this energy region perturbed manifolds
mix. Only,states corresponding to low excitation in the r-mode and high in y-mode i.e.
extreme states, enter the energy region corresponding to the adjacent manifold. This
quantum mechanically corresponds to the “sharp” avoided crossings region. Here we notice
an overall slight increase in the standard deviations (SD) values. A'gain most of the SC

energies obtained are in excellent agreement with quantum values.

Some of the states have, as compared to neighboring states, quite large SD’s (states
80, 85, 87, 91, 92). One might suspect that these are the “wrong topology” cases, i.e. the
corresponding tori lie in the primary 3 : 4 resonance zone. Indeed this is the case e.g. for
85 and 87 states, as shown by the wavefunctions plots®!. These states are in our language
the “hard states”. However, note, that the SC energies obtained for these “hard states”
by the “primitive”, blind switching approach differ here from our results for states that do
not change topology by at most 1 in the forth significant figure. There is no ambiguity in

states assignment. Tlus is, in our opinion, quite satisfactory and acceptable.

Table III gives results close and slightly above E = [¢, which, as mentioned above,
corresponds to the onset energy for classically chaotic motion in a significant volume of
the phase space. An overall increase in the SD's may be noted with the exception of the
“extreme motion” states. Still a majority of the SC energies are in the excellent agreement
with the quantum values even in this region, where different manifolds overlap appreciably
(see the second column of Table 1I1). Where available, Sorbie and Handy’s results®® are
given, they are, however, much worse as compared to the present AS values. There are
no Fourer transform method values available here: let us stress again that these would be

extremely difficult to get in this high densty of state< region. Again, some large SD “hard



states” are to be noted (e.g. 113, 114, 118, 121, 126, 131, 132). These may be due to a
wrong topology or to mild chaos present in this energy region.. Plots of wavefunctions®'
corresponding to 113, 114 states reveal, that indeed these states are influenced by the 3 -4
primary resonant zone. The very close values of the SC energies obtained for the 131,
132 states, which belong to the same manifold, strongly suggest that those two states are
strongly coupled by the 3 : 4 resonance. Only for these two, out of the 25 consecutive
states histed, are the AS values unacceptable.

Finally, in Table IV states close to the escape energy Ep, in classically predominantly
chaotic region of energy are given for both even and odd parities. Overall order of mag-
nitude increase in the SD’s is observed; with the notable favorable exception, again, for
the “extreme” states. A similar decrease in the overall accuracy of the SC energies 1s to
be noted. One expects that as the resonant zones “shrink” in size their influence becomes
negligible and no special “hard state” treatment would improve the results. A possible
exception to this statement are the “extreme” resonant states, located in the vicinity of the
corresponding periodic orbit. SC results of comparable accuracy to ours may be obtained
only by the method of algebraic quantization of very high order classical perturbation
theory*. This latter method, however, suffers from an ambiguity in choosing an optimal
quantization procedure (see Ref.4b, and also the discussion of the nonresonant Hamiltonian
below).

To sumiarize the blind AS approach, i.e. suggested by low order perturbation theory,
allows us to quantize with quite remarkable accuracy almost all “quasi-bound” states of

Hamiltonian (20).



V.B The Fermi resonance.

The model Hamiltonian is now
H=Hy+ox(y® + 2% (24)

where H, as before denotes the Hamiltonian of the uncoupled harmonic oscillators

1, o
Hy = é{pi bt it tudyt)
with a = 3 = --0.08 and two choices of zero order frequencies i.e. w; = 1.4.w, = 0.7 (to
be referred to as the 2: 1 case) and w, = 0.7.w. = 1.4 (the | : 2 case).

The 2 : 1 system has been discussed in etail by Grozdanov et al'*. The implemen-
tation of the AS method used was a particular early application of the general approach
introduced in this paper. Therefore, there is no need to reproduce these results once more.
Let us summarize their findings in the language introduced here.

The perturbation, az(y” + By?) may be xpressed in terms of the creation/annihilation

operators:

. ] o]
aV = 4(31——{ —atat)b bbb Ty T atatiatat)(at a+)}. (25)

Wy w-
Building the P subspaces corresponding to degenerate manifolds, and performing the quan-
tum perturbation theory one finds easily that the first order term PV P gives a nonvan-
1shing contribution

aPV P - zwi‘@].'a(b*)z CathY): &K (25a)
where K = a(b*)? + atb? is the resonant operator (see Sec.IlIB). Note that this is the

only contribution in the first order, suggesting a strong resonant behaviour of the system.

Corresponding classical perturbation theorv leads t (see Ref.14 and references therein):

al] oW (26)



with

/2 1/2

K = 2{2w1_1/2yp:py +w, twpry? wz_lzpz}. (26a)

The adiabatic averaging method (see Sec.IlIA, Eq.(5) and the following) shows that K
gives a secular term; the following Fourier analysis produces no Hgg term. This, again,
shows that the phase space is dominated by the 2 : 1 resonance zone and the degeneracy
is of the intrinsic type.

Indeed, the AS SC energies obtained by Grozdanov et al'? using Eq.(16) were in
excellent agreement with the exact quantum energies for all regular states of the system
and in a very good agreement for states for which the quantizable t‘rajectories lay close
to the separatrix dividing the different topologies of the “up horseshoe” and the “down
horseshoe” type. As seen from the discussion in Sec.lIIA, both up and down topologies
are given by the different values of K. Large and small values of K correspond to the
respective expansions about the two fixed points (see Sec.IIIA for a general discussion of
intrinsic degeneracy and Ref.14 for more details on the AS quantization of this system).

Let us now turn our attention to the 1:2 case. Obviously, the degenerate manifolds
here consist of different states than in 2 : 1 case discussed above. The zy® term, which
previously drove the resonance and gave a secular first order contribution now acts in a
nonresonant way. As a result, the first order perturbation theory term vanishes. I[n the
second order, apart from the diagonal terms (similar to that for 3 : 4 system) new terms
appear that couple states within a degenerate manifold. These are of the form (a't)*b?
and a*(b*)®. One might therefore expect the presence of a secular contribution in this
order. It turns out, however, that these terms cancel out and the resulting expression
1s again purely diagonal in the z,y representation. One may therefore again expect that
the majority of states will be properly quantized using the EBK actions of the individual
oscillators. (Similar conclusions, based on the classical first order secular perturbation
theory have been reached by Noid et al.?*; here the validity of this conjecture is extended

thirough the second order.j



In Table V some representative results for the AS quantization using Cartesian actions
are tabulated for both even and odd states As no comparison with other SC results is
possible for highly excited states, and, as the system. as shown above, is similar to the
3 : 4 case discussed already in detail, we present only a few energy values. Again, not
surprisingly, the overall agreement between the SC energies and the quantum eigenvalues
1s remarkably good for the majority of states. As the quantum diagonalizations were
performed separately in the odd and even i y harmonic basis sets there is no possibility
of level misassignment even for small splittings.

In analogy to the 3 : 4 case, few SC cnergies are obtained with worse than average
accuracy. The corresponding trajectories probably lie in the 1 : 2 resonance zone; the
corresponding SD’s are relatively large as compared to other states. These “hard” states
appear only for higher energies. Low lying states are without exception quantized accu-
rately. This is due to the dominance of the lowest nonvanishing, nonresonant perturbation

term in the low energy region!®.

V.C The Hénon-Heiles, 1:1 resonant system.

The Hénon-Heiles (HH) system described by the Hamiltonian

l )] 2 2 D Yrd
Ho= {2 ple o vy} ooty - 223) (27)

is probably the most often studied coupled oscillators problem. Here ¢ = /0.0125. Nu-
merous SC treatments for this system has been presented; a few of them using the AS
method® 7?1?13 The Hamiltonian (27) is of high (',, symmetry. As a result, the degener-
acy of the uncoupled 1:1 resonant Hy is only partially lifted by the perturbation.

The classical studies revealed®® that there are basically two types of trajectories of H

i the regular regime, the so called precessors. with ring 1y pe topology. and librators with

N



a narrow box-like topology. It is interesting to investigate to what extent our “blind”,
perturbation oriented method will be able to approximate the quantum eigenvalues for
both types of states.

Let us briefly summarize the previous AS approaches to the problem (see also the
discussion in Sec.II). Solov’ev’s® AS quantization was based on the classical perturbation
theory; as such he switched the full perturbation from Hj = Hj, assuming that the angular
momentum is an approximately good perturbed action variable. He claimed excellent
agreement for his SC values with quantum energies, giving however, no numerical examples.
Skodje et al.!® similarly quantized the precessor states; for librators they used the unusual
quantization scheme I, = [/3,] = 0,1,2.... suggested by an early study of Noid and
Marcus®®. In the latter case they have choosen a different H, namely H] — Hy — 0.19z22,
in the spirit of their “resonance avoidance method”. Excellent agreement for the librator
states was obtained in Ref.13, where the different choice, H] - Hy — ez’ /3, was made;
I, was quantized by the standard EBK rul¢ and the “informal” method was used for
the choice of the initial points on the Hj tori. Both of the above methods used several
trajectories and averaged the final energies. Johnson’  for the same system, used a Fourier
expansion in the angle variables to choose two trajectories for which leading nonadiabatic
contributions to the final energies canceled out. He introduced the Langer-type correction
for the angular momentum values and that greatly improved the accuracy for the lowest
lying states.

Let us now proceed in the spirit of the general method of Sec.IV. The classical per-

turbation theory in the lowest nonvanishing order is quadratic in ¢ and gives®®21e

te

Vo = —(TL*  51F) (23)

2

—_

showing that indeed the angular momentum L is a good approximate invariant (together
with, as usual [, = I, + [, = I, +1,(5)). The corresponding quantum perturbation theory
i the operator form. after some algebraic manipulations gives the quantum perturbation

o



operator to second order in e:

- e N .. 1]
V, - S(112 544 - 29
2 = 15l AT ) (29)

where L — zp, — ypr = 1(abt — bat) is the quantum angular momentum operator and
A = ata +b6Th + 1 is the operator describing the total excitation (see Section lIIB).
Note that both the classical V, and the quantum V. quantities give identical results for
tl, thus the corresponding degeneracy is not broken by the second order perturbation
theory. Consideration of the ('3, symmetry of H revealsi® that the appropriate basis set
should be built up from symmetric and antisymmetric combinations of the IN, 1) states
(N stands, as usual, for the principal quaotum nunmiberi. The quantum energy levels
obtained show that, although most of the above remaining degeneracy is not lifted by the
full H, eigenstates corresponding to | = +3;,7 - 1.2... are split. This splitting appears
in a higher order perturbative expansion and may be accounted for semiclassically in the

4,38,41  (Clearly, as there

uniform SC quantization of the Birkhoff-Gustavson®* normal form
is no apparent way to build classical analogs of the linear combinations of |N,I) states,
the AS method cannot reproduce this splitting. As a result we can only compare the SC
energies obtained for NV, =/ to the average of the two quantuin energies.

To second order, L. together with the principal action [, are good invariants. EBK
quantization of I, and L gives [, = N + 1 N -~ 0.1.2, .and L = -N, -N +2 . N -
2, N. Note that such a quantization cannot give correct results for the lowest lying states
as it neglects the constant term present in V,. Contrary to the 3 : 4 case discussed
previously, this constant term is quantitatively important as will be shown below. To

make the appropriate, non-EBK quantization we equate the eigenvalues of the second

order Hamiltonian H, = A, + V, with its classical counterpart H, = L +V,

By 2

Ay (TP sAT sy 0, L s, (30)
12 (2 -
where A stands for the eigenvalue of 4; A N + | As (30) should hold for arbitrary

(in particular equal to 0) ¢, one mmediately obtains the following quantization scheme:

10



I, =N +1; N =0,1,.. (as before) and L - sqn(l)x/lTrTl;/VZT, with [ given by 1ts
quantum values [ = - N,... N -2 N.

Note that this quantization scheme for the angular momentum is very close to the
empirically obtained value of Johnson’s Langer-type correction [ == sgn(l)\/lﬁﬁlﬂ/ré. The
above derivation justifies Johnson’s procedure. Obviously, for high [, the difference between
the corrected (later referred to as the modified Langer correction) and the EBK value
becomes negligible in accordance with the spint of the SC theory.

Hence, according to the method of Section IV we define the quantized torus by the
values of I, and L given by the above quantization scheme (with the modified Langer
correction). The initial points on the torus are determined by picking randomly the angle
of rotation of the coordinate frame 7 (this angle variable is conjugate to L) and the sum
of the initial phases of the individual oscillators ©; (see Eq.(5)1 as the variable conjugate
to the I,. Then we switch the full perturbation. As in the previously discussed cases, the
majority of energies are obtained with great accuracy as compared to the quantum values.
In Table VI results for some representative, “good topology” precessor states are collected.
These are compared with earlier AS results of Johnson” and Skodje et al'®. Note that the
modified Langer correction leads to a great iimprovement for the lowest lying states; the
agreement with the quantum values is extraordinary. On the other hand, as expected, the
modified Langer correction becomes less important for highly excited states. Qur results
are in close agreement with those of Ref.10.

In Table VII the results (denoted as standard AS) for all “wrong topology” librator
states are presented. The agreement with quantum values is worse, especially for moder-
ately excited states. Note, however, that the majority of states of the HH system are of
the precessor type; for them, “blind”, perturbation theory gnided AS works very well. The
librators constitute the minority of “hard states”.

Improvement for these “hard”, low L states can be made without changing the refer-

ence Hamiltonian H{. As the adiabatic invariance 15 destroved during the passage through



the separatrix, it is not possible to get an improvement by adiabatically changing the
Hamiltonian parameters. Is it possible, however, to pass through the separatrix diabati-
cally? Such an approach was successful in treating small secondary resonance zones'”. We
tried, therefore, to decrease the switching time, hoping to minimize the SD’s. The pro-
cedure did not work, probably because the nonadiabacity introduced by the more rapid
switching in other regions was stronger thai the gain due to laster switching through the
separatrix. At this point we were inspired by Johnson's” original method of minimizing

the errors due to nonadiabacity. He noticed, “hat individual final trajectories energies may

be written as a Fourier series in the angle variables

E(T.7,0;5) = Eoo{T) 4 Y Exd Thexplilky + 105]}. (31)

el

By Fourier transforming a set of final energies corresponding to a single level, Johnson® has
found that the dominant term is Fg o. As noted in Ref.7 the Fourier analysis is not needed,
this result can be inferred from the symmetry of the Hamiltonian (26). To minimize
nonadiabatic effects, Johnson took two trajectories, with initial conditions differing by
Yo = 7/6 and averaged the so obtained energies to cancel the contribution due to the Eg
term in (31). All results reported in Ref.7 were obtamed by averaging final energies of two
trajectories started with the initial condition (in our notation) O, = 0, v = 0 and 0, -0,
¥ =7y and switched for relatively short tinies.

Note, however, that the procedure, just described, miniumizes only the leading term
in the Fourier expansion (31). Other termis in (31) may lead to errors as no additional
average or special treatment of other terms was proposed”. We have found that by choosing
different initial conditions { which still lead to minimizing the Eg o term contribution) e.g.
0, = ay, Y - ap and O, = oo,y - a, i Yo («r;, ay arbitrary), that the results of
Johnson’s procedure strongly depend on the choice of «; and «a»; thus the agreement with
the quantum eigenvalues obtained in Ref.7 1+ somewhat accidental (except for the low lying
states).

l



It is important to realize that in order to minimize the influence of the other terms
in (31) one may combine the Johnson’s idea with a random average method. We propose
the following procedure.

1. Choose randomly @g, y.
2. Switch two trajectories started with the initial conditions ©,,~ and 9y, ¥+ 70
3. Average the obtained two final energies to get the “pair averaged energy” FE; =

(El((:)Z»‘Y) + EXO3,7 +70))/2.

4. Repeat steps 1 through 3 for an ensemble of trajectories (i.e. initial conditions 0,,7.

Let n be the number of repeats. ’

One may then define the average energy

1
E=-)Y EF 32
'y <>
and the modified standard deviation (MSD):

MSD = »le:(Ei - E): (33)

n

Note that MSD (33) differs from the typical SD as E, in (33) are the “pair averaged
energies” as defined in step 2 and not the individual final energies.

The “pair average” minimizes the influence of the leading term in (31); the subsequent
average (32) takes care of the other terms. This procedure is, obviously, not needed for
“good topology” states; numerous examples in this paper and previous AS attempts show
that this i1s an unnecessary complication in these cases. For our present purpose, the
described procedure is interesting. It assures that at least the leading term in (31) is almost
exactly canceled and thus the effects of nonadiabacity due to the separatrix crossing as
expressed by MSD will be greatly increased as compared to the typical SD.

With that in mind we have repeatedly switched the typical librator state (quantum
numbers N == 8,/ — 0) for different switching times T looking for a minimum in the

MSD. The MSD so obtained are shown as squares in Fig.3. The error bars correspond



to the difference in MSD’s between the positive [ and the negative { separate cases. For
comparison the SD’s are also shown as open circles in Fig.3. We have repeated this
procedure for several librator-type states; the minimum generally appears around the T =
40. This value is an order of magnitude smaller than the typical switching time 7" = 400
chosen for the “good topology” cases and incidentally is close to the T = 50 value taken
by Johnson®. Accepting T = 40 we have switched all the librator states, the energies
obtained according to (32) are also presented in Table VII. Also both the corresponding
SD’s and MSD’s are shown there. The accuracy of the obtained results suggests that the
procedure described should be also tried (with appropnate modifications) for other “wrong
topology”, “hard” states of other systems.

Concluding this study of the Hénon Heiles system let us stress, that due to proper,
non-EBK quantization, we were able to obtain SC results in excellent agreement with the
guantum values for the low lying states. “Wrong topology” librators’ SC energies were im-
proved over the standard AS approach with the help of the “modified Johnson procedure”

using the same H| as for the precessor states. The numbers speak for themselves.

V.D The nonresonant case.

Lastly, we present the results obtained for the nonresonant Hamiltonian of the form
(24) with parameters wy = 0.7, ws - 1.3, a = -0.1.,3 = 0.1. The results of the AS method
for this system have been already reported’® but are superseeded by the results presented
here which are based on a larger sample of initial points and a smaller step size in the
integration routine. As discussed in Sec.lV the approximately good Cartesian actions in

the nonresonant case are the individual actions of uncoupled oscillators.

The results are collected in Table VI, together with the results of the SC quantization

of the Birkhoff-Guastavson normal form - BGNE of Farrelly and Uzer*® and vied and



Ezra'®. The first group of states lies in the noderately high energy region (about 3/4 of
the classical escape energy Ep). For these states the results of the SC quantization using
the Fourier transform method are also available*?. All quoted SC methods give the results
of comparable accuracy in this energy region. Unquestionably, the AS method requires a
much smaller amount of work that does the Fourier transform method or the 12" order
BGNF with or without Pade resummation (the BGNF of this order may only be obtained
numerically or using symbolic programming language). Notably the SC quantization of
the 6" order BGNF gives results of much worse accuracy?®!.

Somewhat unexpectedly, similar conclusions hold for high lying states, in the vicinity

4(1‘445’ we

of the dissociation energy Fp. Fortunately, due to other independent calculations
can compare our resulls with the results of the SC quantization of a 12" order BGNF, a
12%* order BGNF with Pade resummation, a 16" order BGNF and the same form quan-
tized according to the Weyl quantization rule (see Ref.4b for details). Two surprising
observations may be made. The AS results are at least comparable in accuracy if not (for
the 12 levels for which a comparison may be made) actually closer to the exact quantum
values than the results of the SC quantization of the high order BGNF. Note also the
unexpected large difference between the 12 order and the 16'* order BGNF results in-
dicating a breakdown of the perturbative approach. The Pade resummation results seemn
to be a bit closer to the exact quantum values than the straight SC quantization of the
12" order or the 16" order forms, still being. however. slightly inferior to the AS results.
Weyl quantization of the BGNF seems to give comparable in accuracy results to that of
the AS method, but as noted in Ref.4b, thiy approach produces less accurate results for
lower lying states.

To sumimarize the results obtained for this nonresonant model system, the AS method
gives at least as good SC energies as other sophisticated SC! quantization schemes with.

by far, much less effort involved in the calculation



VI. Conclusions

In this paper we have presented an unambigous method for the choice of a proper tori
and initial conditions to be used in the AS method. Our method is based on the quantum
perturbation theory and as such assures excellent results for the low lying states. The dis-
cussion and a joint use of the classical and quantum ideas provides a basis for an empirically
justified conjecture that the method works for most of the states whose classical analogs
lie in the regular or weakly chaotic regions of the phase space. The’perturbation theory
based choice of tori assures that the correct, appropriate to the perturbation, topologies
are generated for most of the states.The method is general and applicable whenever the
lowest order classical perturbation theory may be carried out in the analytic way. In the
frequently discussed coupled harmonic oscillators case, our approach is, therefore, entirely
different than the one recently suggested®' which puts emphasis on the SU(2) symmetry

of the uncoupled problem.

The presented, perturbation guided, “blind” approach gives, as shown by several
examples, good SC' results even when during the switching of the full (not necessarily
small) perturbation the adiabaticity is destroyed and the initial actions lost due e.g. to a
separatrix crossing (and a corresponding change of the torus topology). In these cases we
Justify the use of the AS method by an analogy to the parameter dependence of the energy
levels as shown by the level correlation diagram isee e.g Fig.1). We expect the AS SC
energies to approximate well quantum values up to the region of sharply avoided crossings
or even sometimes in the region of isolated avoided crossings (see Sec.IIIB). In other words
for energy values, which in quantum perturbation theory are always less sensitive to error
than the wavefunctions or transition moments. our method works in most cases because
the quantum perturbation theory (high order) still gives good results. For a relatively very

lew “hard states”™ “in the classically regulur or mrldly chaotic regions) our approach fails;

{6



also it fails when the system is classically strongly chaotic, which roughly corresponds to

the multiple “broad” avoided crossings part of the level correlation diagram.

The “hard states” which let us repeat constitute a small minority of states could be
SC quantized either by choosing, in the spirit of the “resonance avoidance method”'’, a
different reference Hamiltonian H| or by different, more time consuming SC methods.

In the original Solov'ev® paper an approach closely related to ours, but based purely on
the EBK quantization of actions chosen according to classical perturbation theory, has been
proposed. Our approach improves this proposition in two ways. First, by using quantum
perturbation theory to properly choose the initial tori. we automatically overcome the
possible problem with “Langer-type” corrections. Second. the use of the “informal” method
makes the often difficult procedure of finding of action and angle variables unnecessary.

This greatly simplifies the amount of work needed to implement the AS method.

The perturbation oriented approach, in the original formulation of Solov’ev, has been

criticized by Skodje et al'’

as requiring a large pre-switching theoretical effort. They
favored instead the “resonance avoidance miethod”. In our opinion the simplifications
due to the “informal” method and the quality of results obtained using the quantum
perturbation based AS method fully justify the moderate initial effort of calculating the
lowest nonvanishing order of quantum and classical perturbation theory. The “resonance
avoidance method” requires either a deep insight into the details of the system dynamnics,
making it much harder to use for multidimensional systems, or several guesses for different
Hy which may greatly increase the amount of work needed to obtain good results. We rely
on the standard deviation values and not topology studies to spot the possible topology
changes. We generally accept the results as valid on the basis of the size of the SD and the
obtained energy levels dependence on the switching parameter (i.e. SC level correlation
diagram).

The successful quantization of 3 : 4 and i:1 systems up to the classical escape energies

gives convincing examples of the ability of the AS method to successfully quantize states



even when their classical analogs lie in the mildly chaotic regions of the phase space. This

10.12.14 i5 a further justification of the procedure of following the classical (and quan-

result
tum) correlation diagram as given above. It is quite generally accepted that the “quantum
chaos” in the sense of irregular, patternless wavefunctions is “sluggish” in following the
onset of the classically chaotic motion*®. The results presented here support this idea.
Although the general approach has been presented here only for two degrees of freedom
systems, its extension to higher dimensional systems is straightforward and is given in the
following paper. As far as two dimensional systemis are concerned, we intend to test
the method further. We are completing the SC gquantization of thé Hydrogen atom
parallel magnetic and clectric fields using the proposed method. The Edmonds-Pullen*?
1:1 resonant Hamltonian as well as a family of resonant model systems recently discussed
by Noid and Marcus*® should provide a stringent test of the method. All these systems are
of the intrinsic degeneracy type with the secular terin present, thus their treatment will be
similar to the 2:1 Fermi resonant case. We intend also to perform the AS quantization of
the near resonant 1:1 Barbanis Hamiltonian [see e.g Ref.4). This system is quite similar
to the Henon-Heiles system, the important difference heing that no simple expression of
the perturbation theory in terms of the angular momentum or any other known action is

possible, thus the “informal” method for the choice of the initial points has to be used.

[n our opinion, however, the numerical results presented here, fully justify our ap-

proach proposed in the present paper.
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Fig. 1

Fig.2

Fig.3

Figure captions

Level correlation diagram for the Hydrogen atom in a strong magnetic field B. This
system is equivalent to two coupled harmonic oscillators in a 1 : 1 intrinsic resonance.
In alow B field limit the perturbation is proportional to B? (the Zeeman linear shift
is traditionally omitted). Note the straight line behavior of the levels as a function of
B? followed by sharp avoided crossings Figure reproduced from Ref.46. courtesy of
Dr. D. Wintgen.

Final trajectories of the 3 : 4 resonant system obtained by the AS method for states
45(a), 57(b), 53(c), 49(d), 60(e) and 64(1). For further details see text.

The behaviour of the MSD and the SD as a function of the switching time T for the
|IN,{) = |8,0) state. Open squares correspond to the MSD (left hand scale). Note the
deep minimum around T = 40. The error bars give the difference between two MSD’s
obtained for +! for a given T. Open circles give the usual SD’s (right hand scale). For

further details see text.

52



¥

TABLE I: States of 3:4 System

State N@

d

Ny,Ry Erc® Epy Equ® Eps’ sp8

45 42 10,3 - 13.9878 13.9822 13,9803 4.1(-3)
46 42 6,6 - 14.0605 14.0613 14.0606 3.4(-4)
a7 42 14,0 - 14.0699 14.0723 14.0700 1.1(-4)
48 42 2,9 - 14.2451 14.2454 14.2454 1.4(-4)
49 44 12,2 - 14.5848%  14.5845 14.5843 2.8(-3)
50 44 8,5 - 14.6072 14 .6086 14.6072 1.7(-4)
51 44 4,8 - 14.7618 14.7624 14.7619 1.7(-4)
52 44 0,11 - 14.9901 14.9901 14.9900 0.9(-4)
53 46 10,4 15.1710 15.1705 15.1692 15.1684 3.7(-4)
54 46 14,1 15.2149 15.2152 15.2175 15.2154 7.4(-4)
55 46 6,7 15.2818 15.2827 15.2834 15.2829 3.6(-4)
56 46 2,10 15.4952  15.4957 15.4959 15.4961 0.8(-4)
57 48 12,3 15.7537 15.7582 15.7520 15.7478 8.7(-3)
58 48 8,6 15.8116 15.8121 15.8136 15.8129 7.6(-4)
59 48 16,0 15.8821 15.8825 15.8854 15.8826 1.3(-4)
60 48 4,9 15.9984 15.9989 15.9993 15.9992 1.3(-4)
61 48 0,12 15,2522 16.2523 16.2523 16.2523 1.1(-4)
62 50 10,5 16.3567 16.3429 16.3509 16.3566 6.8(-4)
63 50 14,2 16.3600 16.3€17 16 .3675 16.3621 2.3(-3)
64 50 6,8 16.50%1 16.5043 16.5050 16.5047 3.5(-4)
65 50 2,11 16.7459 16.7462 16.7464 16.7465 1.1(-4)
a., Principal quantum number N = 3n, + &ny.

b. Cartesian quantum numbers,

Ce.

Trajectory closure method, SC results of Sorbie and Handy (ref. 29).
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TABLE I: continued...

Fourier transform method SC results of Martens and Ezra (ref. 20).
e. Exact quantum mechanical results (1256 even in x, harmonic basis set).
f. Present AS results, T=400 average of 25 trajectories.

g. Standard deviations a(-b) stands for a x 10~P.

The more favorable of the two numbers reported in ref. 20 is listed.
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TABLE II: States of 3:4 System continued. Notation as in Table I.

State N Ny, Ny Ec Equ Eps SD

80 58 14,4 - 18.6453 18.6908 2.1(-2)
81 58 10,7 - 18.7293 18.7280 1.3(-3)
82 56 0,14 - 18.7767 18.7768 <0.1(-4)
83 58 18,1 - 18.7799 18.7770 1.0(-3)
84 58 6,10 18.9448 18.9464 18.9467 3.4(-4)
85 60 16,3 - 19.2252 19.2399 1.3(-2)
86 58 2,13 - 19.2469 19.2469 0.5(-4)
87 60 12,6 - 19.2639 19.2552 2.1(-3)
88 60 8,9 - 19.4243 19.4236 6.6(-4)
89 60 20,0 19.4832 19.4838 19.4789 3.0(-4)
90 60 4,12 - 19.7083 19.7080 1.6(-4)
91 62 14,5 ~ 19.7822 19.7831 2.2(-2)
92 62 18,2 - 19.8742 19.8709 2.5(-3)
93 62 10,8 - 19.9125 19.9112 1.1(-3)
94 60 0,15 - 20.0388 20.0391 1.6(~4)
95 62 6,11 - 20.1658 20.1652 3.6(-4)

TABLE ITI: States of 3:

4 System Continued. Notation as in Table T.

State N Ny,Ny Epc Equ Eps SD

111 66 2,15 - 21.7467 21.7469 0.5(-4)
112 68 8,11 - 21.8244 21.8237 7.0(-4)
113 70 18,4 - 22.0060 22.018% 3.3(-2)
114 70 14,7 - 22.0939 22.0878 6.0(~3)
115 68 4,14 - 22.1785 22.1784 1.8(-4)
116 70 10,10 22.2606 22.2715 22.270" 1.4(-3)
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TABLE IIT: continued...

117 70 22,1 - 22.2863 22.2819 6.4(-3)
118 72 16,6 - 22.5460 22.5470 4.1(-2)
119 68 0,17 - 22.5631 22.5636 0.2(-4)
120 70 6,13 22.5991 22.6011 22.6006 5.3(-4)
121 72 20,3 - 22.6727 22.6741 8.2(-3)
122 72 12,9 - 22.7355 22.7319 1.9(-3)
123 70 2,16 - 22.9963 22.9966 0.5(-4)
124 72 8,12 - 23.0212 23.0202 8.8(-4)
125 72 24,0 - 23.0398 23.0294 6.8(-4)
126 74 18,5 - 23.0826 23.0609 5.7(-2)
127 74 14,8 - 23,2166 23.2225 5.7(-3)
128 74 22,2 - 23.3197 23;3157 '6.3(—3)
129 72 4,15 - 23.4125 23.4124 4.4(-4)

130 74 10,11 23.4325 23.4464 23.4449 1.4(-4)

131 76 20,4 - 23.6122 23.6822 4.9(-2)
132 76 16,7 - 23.7522 23.6834 3.0(-2)
133 74 6,14 - 23.8164 23.8157 2.0(-3)
134 72 0,18 - 23.8252 23.8257 0.2(-4)

135 76 12,10, 23.8654 23.8864 23.8829 3.7(-3)
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TABLE IV: Highest Quasi-Bound States of the 3:4 System

State® N

Nysny EQMb Epg SD
142¢ 78 10,12 24.6151(2)  24.6156 3.5(-3)
143¢ 76 4,16 24.6454(7) 24.6458  8.8(-4)
144 80 20,5 24.6463(80) 24.6462 9.3(-2)
145¢ 78 26,3 24.7924 24.7804 4.8(-3)
146® 80 16,8 24.8373(4)  24.8076 3.2(-2)
147 80 24,2 25.0086(90) 25.0024 2.2(-2)
148% 78 6,15 25.0268(9) 25.0289  3.9(-3)
149¢ 80 12,11 25.0366(7) 25.0303  6.3(-3)
1508 76 0,19 25.0873 25.0879  2.0(-5)
151¢ 82 18,7 25.1540(93) 25.1961 9.2(-2)
152¢ g2 22,4 25.3709(12) 25.3485 6.6(-2)
153¢ 80 8,14 25.4053 25.4004 1.5(-3)
137° 77 23,2 24.1684 24 .1669 1.1(-2)
138° 75 5,15 24.2273 24.2274 1.6(-3)
139° 77 11,11 24.2429(39) 24.2431 2.0(-3)
140° 79 17,7 24.3909(20) 24.4502 5.6(-2)
141° 79 21,4 24.5691 24.5112 5.7(-2)
142° 77 7,14 24.6171 24.6160 5.1(-3)
143° 75 1,18 24.6662 24 .6667 3.0(-5)
144° 79 13,10 24.6849 24.6794 5.8(-3)
145° 79 25,1 24.8559(67) 24.8446 3.0(-2)
146° 81 19,6 24.9061(89) 24.9129 1.1(-1)
147° 79 9,13 25.0041 25 .0005 8.5(-3)
148° 77 3,17 25.0686 25.0688 4.6(-3)
149° 81 15,9 25.1151(3)  25.1374 3.3(-2)
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TABLE IV: continued...

a. Superscript e/o denotes an even/odd in x state, count-
ed separately for each parity.
b. The number in brackets gives the last digits different in
the smaller diagonaliztion, e.g. 24.6463(80) stands for
24.6463 in the basis of 1156 even (1122 odd) states and

24.6480 in the smaller basis of 1089 even (1089 odd)

states.
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TABLE V: Some Energy Levels of the 1:2 Hamiltonian

Na

b

Ny, Ny Evkn EQ°® Epsd SD®

0 0,0 1.048 1.04778 1.04778 <1.0(-5)
1 1,0 1.744 1.7440 1.7440 1.0(-5)
2 1,0 2.438 2.4387 2.4387 <1.0(-5)
2 2,0 2.439 2.4388 2.4388 4.0(-5)
3 1,1 3.132 3.1297 3.1297 4.0(-5)
3 3,0 3.130 3.1323 3.1323 * 6.0(-5)
4 2,1 - 3.8192 3.8192 1.2(-4)
4 0,2 - 3.8228 3.8229 1.0(~5)
4 4,0 - 3.8244 3.8244 7.0(-5)
22 10,6 - 15.8079 15.8092 1.2(~2)
22 8,7 - 15.8085 15.8164 1.1(-2)
22 12,5 - 15.8310 15.8218 1.3(-2)
22 6,8 - 15.8376 15.840% 2.4(-3)
20 14,4 - 15.8464 15.8449 4.3(-3)
22 4,9 - 15.8648 15.8646 1.0(-3)
22 16,3 - 15.8722 15.8722 4.1(-3)
22 2,10 - 15.9001 15.9001 2.7(-4)
22 18,2 - 15.9127 15.9129 3.2(-3)
22 0,11 - 15.9458 15.9459 1.0(-5)
22 20,1 - 15.9656 15.9660 2.0(-3)
22 22,0 - 16.0319 16.0317 6.9(-4)
a. Principal quantum number N = n,

b. Semiclassical results of ref. 26.



TABLE V: continued...

Exact quantum eigenvalues calculated in harmonic basis set.

d. Present AS results.

e. Standard deviations; a(-b) stands for a x 10-P,
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TABLE VI: Some "Proper Topology" States of the Henon-Heiles System

(n,0)a Eyb Eqpr® EQMd Eyc® spf
0,0 0.9984 0.9947 0.99859 0.99859 0.6(~5)
1,1 1.9899 1.9862 1.9901 1.9901 3.9(-5)
2,0 2.9560 2.9506 2.9562 2.9562 3.4(-4)
2,2 2.9851 2.9814 2.9853 2.9852 6.0(-5)
3,1 3.9257 3.9225 3.9260 3.9260 4.8(-4)
3,3 3.9837 3.9801 3.9841% 3.9839 ‘ 1.0(-4)
4,2 4.8986 4.8954 4.8987 4.8987 5.0(-4)
4,4 4.9856 4.9819 4.9863 4.9858 1.0(-4)
745 7.831 7.8281 7.8327 7.8316 7.0(-4)
757 8.007 8.0038 8.0094 8.0078 2.3(-4)
10,4 - 10.453 10.463% 10.457 4.0(-4)
10,10 - 11.040 11.050 11.044 5.0(-4)
1,11 - 12.051 12.065 12.055 8.0(-4)
12,4 - 12.176 12.206 12.180 3.0(-2)
12,6 - 12.296 12.305% 12.296 2.4(-2)
12,8 - 12477 12.480 12.472 1.9(-2)
12,10 - 12.710 12.712 12.715 3.3(-2)
12,12 - 13.058 13.082% 13.062 6.0(-4)

a. State classification: N-principal quantum number, Z—angular momentum.

b. AS results of Johnson (ref. 7), angular momentum quantized with

the Langer correction.

c. AS results of Skodje et al. (ref. 10), EBK quantization of

angular momentum.

d. Quantum mechanical results (ref. 3G..
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TABLE VI: continued...

e. Present AS results quantized with the "modified Langer correc-
tion" defined in the text states up to (7,7) average of 10

trajectories, higher states average of 30 trajectories.

f. Standard deviations.

* Average of two quantum mechanically split levels.



TABLE VII: Precesor-Type States of the Henon-Heiles System

(N,{)a

E,P Espr®  Egsr?  Equ® EpssT  SDgB  EygyP spk Mspl
4,0 4.8698 4.8573 - 4.8702 4.8708 3.6(-3) 4.8708 6.5(-3) 2.9(-4)
5,1 5.8167 5.8167 5.8240 5.8170 5.8168 6.3(-3) 5.8169 1.2(-3) 4.1(-4)
6,0 6.738 6.7077 6.7574 6.7379 6.7341 1.0(-2) 6.7378 2.0(-2) 6.5(-4)
7,1 7.659 7.6556  T7.6T47  T7.6595  7.6527 1.2(-2) 7.6601 2.8(-2) 1.3(-3)
8,0 8.55 8.4919  8.5758  8.5541 8.5353 2.5(-2) 8.5544 4.1(-2) 2.5(-3)
8,2 8.58 8.5965 - 8.5764 8.6018 4.0(-3) 8.5833 3.3(-2) 2.0(-3)
9,1 - 9.4276  9.4593  9.4441  9.4272 3.2(-2)° 9.4499 5.8(-2) 5.1(-3)
10,0 - 10.194 10.319 10.305 10.2717  5.0(-2) 10.311 8.5(-2) 9.1(-3)
10,2 - 10.358 - 10,318  10.349  1.0(-2) 10.346 7.2(-2) 6.7(-3)
1,1 - 11.127  11.163 11.152 11.131  6.3(-2) 11.174 1.2(-1) 1.4(-2)
12,0 - 11.736 11.956 11.966  11.933  1.0(-1) 11.994 1.5(-1) 2.0(-2)
12,2 - 12.047 - 11.968 12.005 6.7(-2) 12.032 1.3(-1) 1.9(-2)
13,1 - 12.703  12.732  12.762 12.772 1.2(-1) 12.811 2.0(-1) 2.9(-2)
13,3 - 12.914 - 12.890*% 12.923 5.9(-2) 12.896 1.5(-1) 4.0(-2)

a. Principal and angular momentum quantum numbers.
b. AS results of Johnson, ref. ’

c. Skodje et al. (ref. 10) AS results with different H (see text).

d. Grozdanov et al. (ref. 13) AS results with another Hg and EBK quantization of I,

I, actions.

e. Exact quantum energies (ref. 39).

f. Epggy standard AS approach results, switching time T = 400.

g. Standard deviations.

k. Standard deviations for T = 40.
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TABLE VII: continued...

1. Modified standard deviations (see text).

*  Average of two energies.



TABLE VIII: Energy Eigenvalue for a Non-Resonant

Hamiltonian.

State Wy,ny FT8  E,,P E;op®  Eqgd Ei®  Egu' E, <8 SD

36 10,0 T.7419  7.7420 7.7418 - - 7.7423  7.7419 4.3(-5)
37 1,5 7.8996 7.8999  7.8999 7.8996 7.9000 8.9(-5)
38 3,4 7.9522  7.9529  7.9527 - - 7.9525  7.9528 8.3(-5)
39 5,3 8.0256 8.0264 8.0260 - - 8.0259 8.0261 6.0(-5)
40 742 8.1213  8.1225 8.1220 - - 8.1220 8.1221 8.0(-5)
41 9,1 8.2428 B8.2438 8.2432 - - 8.2435 8.2433 5.2(-5)
42 11,0 8.3924 8.3936 8.3932 - - 8.3939  8.3932 1.0(-4)
74 4,6 - 10.8726 10.8676 10.8696 10.8618 10.8657 10.8667 2.4(-3)
75 6,5 - 10.9149 10.9071 10.9103 10.9013 10.9053 10.9061 4.5(-4)
76 15,0 - 10.9485 10.9431 10.9455 10.9379 10.9439 10.9408 5.6(-4)
77 8,4 - 10.9816 10.9717 10.9756 10.9658 10.9700 10.9705 5.1(-4)
78 10,3 - 11.0761 11.0641 11.0689 11.0584 11.0612  11.0624 1.8(-3)
79 12,2 - 12.2024 11.187€¢ 11.1942 11.1836 11.1856 11.1883 8.2(-3)
80 14,1 - 11.3656  11.349% 11.3575 11.3474 11.3484  11.3434 1.2(-2)
81 1,8 - 11.4233  11.4218 11.4222 11.4153 11.4129  11.4190T 4.1(-3)
82 3,7 - 11.4238 11.4186  11.4206 11.4124 11.4158  11.4129% 9.5(-3)
83 5,6 - 11.4447 11.4347 11.4390 11.4294 11.4325 11.4303 5.2(-3)
84 745 - 11.4885 11.4737 11.4890 11.4694 11.4713  11.47130 1.4(-3)
85 16,0 - 11.5729 11.5633 - - 11.5324  11.55190 1.8(-3)
a. SC results by FFT method (ref. 42).

b. SC quantization of 12th order BGNF (ref. 4a).

c. SC quantization of 12th order BGNF with Pade resummation (ref. 4a).

d. SC quantization of 16th order BGNF (ref. 4b).

e. SC quantization

of 16th order BGNF with Weyl quantiztion rule (ref. 4b).
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TABLE VIII: continued...

f. Exact quantum-mechanical values (from ref. 41).
g- Present AS results, average of 25 trajectories with switching time T = 400.
h. Levels above classical escape energy E = 11.4601.

r. Quantizing trajectories in 1:2 resonance zone (ref. 13).
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